Technical Note—Facets and Strong Valid Inequalities for Integer Programs
نویسندگان
چکیده
منابع مشابه
Valid inequalities for mixed integer linear programs
This tutorial presents a theory of valid inequalities for mixed integer linear sets. It introduces the necessary tools from polyhedral theory and gives a geometric understanding of several classical families of valid inequalities such as lift-and-project cuts, Gomory mixed integer cuts, mixed integer rounding cuts, split cuts and intersection cuts, and it reveals the relationships between these...
متن کاملStrong formulations for mixed integer programs: valid inequalities and extended formulations
We examine progress over the last fifteen years in finding strong valid inequalities and tight extended formulations for simple mixed integer sets lying both on the “easy” and “hard” sides of the complexity frontier. Most progress has been made in studying sets arising from knapsack and single node flow sets, and a variety of sets motivated by different lot-sizing models. We conclude by citing ...
متن کاملOn Minimal Valid Inequalities for Mixed Integer Conic Programs
We study mixed integer conic sets involving a general regular (closed, convex, full dimensional, and pointed) cone K such as the nonnegative orthant, the Lorentz cone or the positive semidefinite cone. In a unified framework, we introduce K-minimal inequalities and show that under mild assumptions, these inequalities together with the trivial cone-implied inequalities are sufficient to describe...
متن کاملStrong-branching inequalities for convex mixed integer nonlinear programs
Strong branching is an effective branching technique that can significantly reduce the size of the branch-and-bound tree for solving Mixed Integer Nonlinear Programming (MINLP) problems. The focus of this paper is to demonstrate how to effectively use “discarded” information from strong branching to strengthen relaxations of MINLP problems. Valid inequalities such as branching-based linearizati...
متن کاملMinimal Valid Inequalities for Integer Constraints
In this paper we consider a semi-infinite relaxation of mixed integer linear programs. We show that minimal valid inequalities for this relaxation correspond to maximal latticefree convex sets, and that they arise from nonnegative, piecewise linear, positively homogeneous, convex functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operations Research
سال: 1976
ISSN: 0030-364X,1526-5463
DOI: 10.1287/opre.24.2.367